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ABSTRACT
The control parameter, maximum number of function evaluations
plays two important roles during the optimization process. It can
determine the population size of some evolutionary algorithms and
it also serves as a stopping condition of an optimization process. In
this paper, we focus on setting the value of the control parameter
for the L-SHADE algorithm for a chosen large-scale benchmark
function. For this purpose we utilized a recently proposed approach
𝐴𝑆3𝐷 , which enables us to predict a stopping condition with a
certain probability for a given solver and optimization problem,
while using the fixed-target approach.
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1 INTRODUCTION
Recently proposed algorithms, such as jSO [6], L-SHADE [19], iL-
SHADE [5] and MadDE [4] use the maximum number of function
evaluations (maxFEs) as a control parameter. This has two roles
during an optimization process. It influences the population size
and it serves as a stopping criteria.When a specific value of function
evaluations as a stopping condition is set, this is the fixed-budget
approach [13].

In competitions, such as CEC [1], the maximum number of func-
tion evaluations is set as a stopping condition. The value of it is
predetermined or set according to the past years competitions. How-
ever, it can occur that the improper setting of the stopping condition
can affect the performance of the evolutionary algorithms. It can
happen that the budget is too small, which can result in premature
convergence and the solution which is not of optimal quality. Some
mishaps during a new experiment can happen if the predetermined
budget is different from the one used in the original paper. This can
affect the comparison of the algorithms, since a bigger budget can
help the algorithm reach a solution of a better quality. However,
the stopping criteria does not only terminate the algorithm, but it
also plays an important role in the analysis and comparison of the
evolutionary algorithms. The stopping condition can produce a sig-
nificant differences in the ranking of evolutionary algorithms [18].
Before an experiment, it is crucial to set the correct stopping con-
dition due to all aforementioned points. It is unknown how many
number of function evaluations an algorithm will need to reach
the solution of a wanted quality. The question which we propose
in this paper is: how to determine a maximum number of function
evaluations for a chosen evolutionary algorithm and problem?

For this purpose, we focus on setting a stopping condition/control
parameter for a given evolutionary algorithm on a chosen bench-
mark function. We chose a 7-nonseparable, 1-separable Shifted and
Rotated Elliptic Function from CEC’2013 Large-Scale Global Op-
timization benchmark functions [16] and L-SHADE. L-SHADE is
considered as the state-of-the-art algorithm from the previous CEC
competitions with the success-history based parameter adaptation
and linear population size reduction [19]. To be able to set the value
of a control parameter (maxFEs), we will utilize a recently proposed
approach 𝐴𝑆3𝐷 (Analysis of the Stochastic Solvers based on the
Statistical Distribution) [12]. This approach is based on the statis-
tical distribution and parameters of the observed variable. In our
case, this is the number of function evaluations needed to reach a
specific target. With this approach, we will not only set a stopping
condition/control parameter for the higher dimensions of the given
optimization problem, but also provide these values with a specific
probability. Identifying the statistical distribution and its parame-
ters enables us to establish a predictive model. The predictive model
helps in estimating the stopping condition according to the char-
acteristics of the chosen evolutionary algorithm and optimization
problem.

The paper is organized as follows. In Section 2, the related work
is described. In Section 3, the experiment and analysis are provided.
Section 4 concludes our paper.

2 RELATEDWORK
In this paper, we focus on three aspects of the evolutionary computa-
tion: on setting the stopping condition, the analysis and comparison
of evolutionary algorithms, and the statistics behind it all.

Firstly, we focus on setting the control parameter of the optimiza-
tion process for a specific evolutionary algorithm and optimization
problem. In our case, when analyzing the L-SHADE algorithm,
the control parameter serves also as a stopping condition. This is
the fixed-budget approach [3]. This means that the value of it is
predetermined and the algorithm stops, when the budget is spent.
Contrary to the fixed-budget approach, with the fixed-target ap-
proach [10], we set a certain quality of solutions, which should be
reached by the evolutionary algorithm. In this case we observe the
number of function evaluations or runtime needed to reach this
quality of solutions.

Setting the stopping condition represents a demanding task.
In [14], authors argue that setting a higher number of function
evaluations as a stopping condition may not present a higher com-
putational cost and should be considered in benchmarking. They
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examine the effect of a higher evaluation budget on the perfor-
mance, mean, convergence of the algorithms, and population di-
versity. In [18], the authors show that using different stopping
criteria produces different results while comparing the state-of-the-
art algorithms. They argue that this fact is often overlooked by the
researchers.

One of the most recent approaches, which offers several aspects
of the algorithm’s comparison and analysis is𝐴𝑆3𝐷 approach, which
will be utilized in this paper. This approach does not only rely on
statistics, but it takes into consideration the characteristics of an
algorithm and also of an optimization problems. It offers a deeper
insight into the performance of an algorithm based on the statistical
distribution of the observed variables [12]. It does not only provide
a statistical distribution of the observed variable as it is described
in [17], but also establishes predictive models with which we can
predict stopping conditions with any wanted probability.

However, one should not neglect the basis for every fair com-
parison of the evolutionary algorithms: the parametric and non-
parametric statistical tests [8], [9]. Several statistical approaches
have been proposed as an answer to only using the statistical tests.
Those are the following [7], [15], [20] and [9].

3 EXPERIMENT
In this paper, we focused on analysing the L-SHADE algorithm on
a 7-nonseparable, 1-separable Shifted and Rotated Elliptic Function.
The main intention is to show how to set the control parameter for
L-SHADE for a larger dimension of the chosen benchmark function.

We made 100 independent runs for each chosen dimension
𝐷 = {5, 10, ..., 40} of the large-scale function. We applied the target-
approach with the optimal quality of solutions. The proposed ap-
proach𝐴𝑆3𝐷 requires that the given evolutionary algorithm reaches
the target in all runs, so that the hit ratio is 100%. We show how to
set/predict the control parameter/stopping condition maxFEs for
the dimension 𝐷 = 50 based on the model established from the
smaller dimensions. Then we will empirically validate the results
by running the L-SHADE for 𝐷 = 50 and comparing the empirical
and predicted values.

Firstly, we analysed the statistical distribution of 100 indepen-
dent runs of each dimension 𝐷 = {5, 10, ..., 40}. For this purpose,
we used the Shapiro Wilk’s statistical test, where the p-value needs
to be less than 0.005 (𝑝 < 0.005). We observed how many number
of function evaluations 𝑁𝐹𝐸𝑠 are needed that L-SHADE reaches
the set optimal solution in each of the independent runs. We show
that the statistical distribution is normal for each of the chosen
dimensions. The Fig. 1 depicts the normal distribution for the di-
mension 𝐷 = 10. Histogram can be a good visualization tool for
determining the statistical distribution of the given sample [11].

Normal distribution has two parameters: mean and standard
deviation, which are calculated as shown in Eq. (1) and Eq. (2).

𝑥 =
1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
(1)

The 𝑥 in Eqs. (1) and (2) represents the NFEs. The 𝑛 represents the
sample size (number of independent runs), which is in this case
100.

Figure 1: The normal distribution for the dimension 𝐷 = 10.

𝜎 =

√︂
Σ(𝑥𝑖 − 𝜇)2

𝑛
(2)

To be able to predict the stopping condition/the control param-
eter for 𝐷 = 50, we need to establish the predictive model based
on the parameters of the statistical distribution. The parameters
follow a trend, in our case they follow a polynomial trend shown in
Eq. (3). The 𝑎, 𝑏, and 𝑐 are the real numbers. To be able to correctly
determine, which trend line is being followed by the data we use
the 𝑅2 value. This serves as a valuable indicator to determine the
optimal curve fit for the provided parameters [2]. If the 𝑅2 is close
to 1, this indicates a very good fit. In our case, 𝑅2 was 0.9931. In
Eq. (4) the predictive model for the parameter 𝜇 is established. The
established predictive model is shown in Fig. 2. Eq. (5) shows the
trend line fitted to the data and will be used for further calculations.

ysolver = a · x2 + b · x + c (3)
𝜇L−SHADE (D) = 426.31 · D2 − 2382 · D + 24,716 (4)

The second parameter of the statistical distribution is the stan-
dard deviation (𝜎). We also established a predictive model for (𝜎)
following the same procedure for 𝐷 = {5, 10, ..., 40}. The predictive
model is shown in Eq. (5) and in Fig. 3.

𝜎L−SHADE (50) = 87 .774 · D2 − 2146.2 · D + 11,957 (5)

Firstly, we will predict 𝜇 and 𝜎 for the 𝐷 = 50. The calculations
are shown in Eqs. (6) and (7).

𝜇L−SHADE (50) = 426.31 · 502 − 2382 · 50 + 24,716 = 971,391 (6)
𝜎L−SHADE (50) = 87 .774 · 502 − 2146.2 · 50 + 11,957 = 112,136 (7)

We predicted both parameters 𝜇 and 𝜎 . However, to determine
the stopping condition, we also need to know with what probability
do we want the optimal solutions to be reached. Here, we will need
the 𝑍 -score table [11], with which we can estimate the probability.
In our case, we are calculating the control parameter/stopping
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Figure 2: Prediction model for the mean (𝜇) of 𝑁𝐹𝐸𝑠 for L-
SHADE on observed dimensions 𝐷 = {5, 10, ..., 40}. The 𝑅2 is
0.99.

Figure 3: Prediction model for the standard deviation (𝜎) of
𝑁𝐹𝐸𝑠 for L-SHADE on observed dimensions 𝐷 = {5, 10, ..., 40}.
The 𝑅2 is 0.98.

condition, so wewill use the Eq. (8). Wewant to predict the stopping
condition with 99% probability. For this purpose, we will use the
Z-score table and check what the value is for 99% probability. The
value at 99% probability is 3.1, so we will use this value for our
further calculations.

𝑍 =
𝑚𝑎𝑥𝐹𝐸𝑠 − 𝜇

𝜎
(8)

maxFEs(99%) = 𝜇 + 𝑍 · 𝜎 = 971,391 + 3.1 · 112,136 = 1,319,012
(9)

In Eq. (9), we show the prediction of the stopping condition/cont-
rol parametermaxFES. The stopping conditionmaxFES to reach the
optimal solutions with L-SHADE on the given benchmark function
and 99% probability is 1,356,045 maxFES.
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Figure 4: The comparison of the empirical and predicted
statistical distribution for 𝐷 = 50.

To empirically validate these results, we measured the hit ratio.
Hit ratio represents the relationship between the number of success-
ful runs and all runs. With a 99% hit ratio, we obtained 1,118,419
maxFEs. With this, we show the usefulness of the proposed ap-
proach. The gap between the empirical and predicted values is 15%.
We can apply this approach for any probability. For this purpose,
we also show predicted and empirical results for the probability
of 50%. The predicted and empiricalmaxFEs for the probability/hit
ratio 50% for 𝐷 = 50 are 971,391 and 877,252. The gap between the
empirical and predicted value is 10%. In our examples, it is evident
that the predicted values are higher than the empirical ones. This
shows that our predictive model is slightly pessimistic.

To show how well the predicted and empirical mean (𝜇) of the
NFEs match, we will utilize another aspect of the 𝐴𝑆3𝐷 approach.
Since we predict the parameters of the statistical distribution, we
also predict the statistical distribution. In Fig. 4, we show how well
the predicted and empirical statistical distributions match.

This experiment indicates that the control parameter for L-SHADE
on the chosen benchmark function can be predicted by utilizing
the 𝐴𝑆3𝐷 approach. However, this approach also enables us to:

• Estimate the probability with which a (sub)-optimal solu-
tion can be reached according to the preset stopping condi-
tions.

• Analyze and compare the chosen evolutionary algorithms
and optimization problems.

Still, we need to take into the account some limitations of the
approach. Firstly, the hit ratio needs to be 100%. This means that
the algorithm reaches a given quality of solutions for each inde-
pendent run. Since the predictive model is established on smaller
dimension of the optimization problem and the prediction is made
for the larger dimensions, the chosen optimization problem needs
to be multidimensional. It can also occur that the parameters of the
statistical distribution do not follow any recognizable trend line.
This means that the prediction cannot be made.
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Overall, the control parameter/stopping condition can be set by
the proposed approach.

4 CONCLUSION
In conclusion, the control parameter maximum number of function
evaluations (maxFEs) holds a significant role in the optimization
process. It impacts the parameter population size of an evolutionary
algorithm and it serves as a stopping criteria. This paper focused on
setting the control parameter maxFEs for the L-SHADE algorithm
and selected Large-Scale benchmark function. Through the experi-
ment, we show that the recently proposed approach is appropriate
for predicting the control parameter of L-SHADE by establishing a
predictive model based on smaller dimensions of the chosen bench-
mark function. The stopping condition is predicted by considering
the 99% probability. The calculations were empirically validated
by comparing the empirical and predicted values of the control
parameter.

In conclusion, by using this approach, we not only set stopping
condition, but also provide probability with which the chosen qual-
ity of solution can be reached.
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