Page 84 - Petelin, Ana. 2024. Ed. Zdravje delovno aktivnih in starejših odraslih | Health of the Working-Age and Older Adults. Zbornik prispevkov z recenzijo | Proceedings. Koper: University of Primorska Press
P. 84

CHEN, M. and DECARY, M., 2020. Artificial intelligence in healthcare: An
                    Essential guide for health leaders. Health Management Form, vol. 33, no.
                    1, pp. 10–18.
               DARCY, A.M., LOUIE, A.K. and ROBERTS, L.W., 2016. Machine Learning
                    and the Profession of Medicine. JAMA, vol. 306, pp. 848–855.
               De FAUW, J., LEDSAM, J.R., ROMERA-PAREDES, B., NIKOLOV, S., TO-
                    MASEV, N., BLACKWELL, S., ASKHAM, H., GLOROT, X., O’DONO-
                    GHUE, VISENTIN, D. et al., 2018. Clinically applicable deep learning
                    for diagnosis and referral in retinal disease. Nature Medicine, vol. 24, no.
                    9, pp. 1342–1350. DOI: 10.1038/s41591-018-0107-6.
               DILSIZIAN, S.E. and SIEGEL, E.L., 2014. Artificial intelligence in medicine
                    and cardiac imaging: harnessing big data and advanced computing to
                    provide personalized medical diagnosis and treatment. Current Cardiol-
                    ogy Reports, vol. 16, no. 441.
          84
               ETGES, A.P.B. da S., CRUZ, L.N., SCHLATTER, R., et al., 2022. Time-Driven
                    activity-based costing as a strategy to increase efficiency: an analyses of
          zdravje delovno aktivnih in starejših odraslih | health of working-age and older adults
                    interventional coronary procedures. The International Journal of health
                    planning and management, vol. 37, no. 1, pp. 189–201.
               FERRALLELLI, M., 2023. ¿Cómo Abordar La Inteligencia Artificial En El Au-
                    la? Ciaesa: Buenos Aires.

               GIORDANO, C., BRENNAN, M., MOHAMED, B., RASHIDI, P., MODAVE,
                    F. and TIGHE, P., 2021. Accessing Artificial Intelligence for Clinical De-
                    cision-Making. Frontiers in Digital Health, vol. 3:645232.
               GOPAL, G., SUTER-CRAZZOLARA, C., TOLDO, L. and EBERHARDT,
                    W., 2019. Digital transformation in healthcare – architectures of present
                    and future information technologies. Clinical Chemistry and Laboratory
                    Medicine, vol. 57, no. 3, 328–335.
               GOSAK, L., PRUINELLI, L., TOPAZ, M. and ŠTIGLIC, G., 2024. The
                    ChatGPT effect and transforming nursing education with generative AI:
                    Discussion paper. Nurse Education in Practice, vol. 75: 103888.
               HARWICH, E. and LAYCOCK, K., 2018. Thinking on its own: AI in the NHS.
                    London: Reform, 2018.
               HERNANDEZ, I., TELLO, J., BELDA, C., URENA, A., SALCEDO, I., ESPI-
                    NOSA-ANKE, L. and SAGGION, H., 2017. Savana: re-using electronic
                    health records with artificial intelligence. International Journal Interac-
                    tive Multimedia Artificial Intelligence, vol. 4, no. 7, pp.  8–12.
               HE, J., BAXTER, S.L., XU, J., XU, J., ZHOU, X. and ZHANG, K., 2019. The
                    practical implementation of artificial intelligence technologies in medi-
                    cine. Nature Medicine, vol. 25, no. 1, pp. 30–36.
               JIANG, F., JIANG, Y., ZHI, H., LI, H., MA, S., WANG, Y., DONG, Q., SHEN,
                    H. and WANG, Y., 2017. Artificial intelligence in healthcare: past, pres-
   79   80   81   82   83   84   85   86   87   88   89