Page 134 - Ellingham, Mark, Mariusz Meszka, Primož Moravec, Enes Pasalic, 2014. 2014 PhD Summer School in Discrete Mathematics. Koper: University of Primorska Press. Famnit Lectures, 3.
P. 134
3.6 References

13. Supply a proof of Lemma 3.5.31.

14. Use GAP to explore the number f (m ) of groups of order m for small m , and in the

case when m = p n for small primes p and integers n .

3.6 References

[1] Atlas of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
[2] S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of finite groups,

Cambridge University Press, Cambridge, 2007.
[3] K. S. Brown, Cohomology of groups, Springer-Verlag, New York, 1982.
[4] P. J. Cameron, Notes on finite group theory, October 2013.
[5] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.4; 2014,

(http://www.gap-system.org).

[6] I. M. Isaacs, Finite group theory. Graduate Studies in Mathematics, 92. American
Mathematical Society, Providence, RI, 2008.

[7] C. R. Leedham-Green, and S. McKay, The structure of groups of prime power order,
Oxford University Press, New York, 2002.

[8] D. J. S. Robinson, A course in the theory of groups, 2nd. ed., Springer-Verlag, New
York, 1996.

[9] C. C. Sims, Computation with finitely presented groups, Cambridge University Press,
Cambridge, 1994.
   129   130   131   132   133   134   135   136   137   138   139